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Abstract

A thermodynamically consistent damage model for the simulation of progressive
delamination under variable mode ratio is presented. The model is formulated in the
context of the Damage Mechanics. The constitutive equation that results from the
definition of the free energy as a function of a damage variable is used to model the
initiation and propagation of delamination. A new delamination initiation criterion
is developed to assure that the formulation can account for changes in the loading
mode in a thermodynamically consistent way. The formulation proposed accounts
for crack closure effets avoiding interfacial penetration of two adjacent layers after
complete decohesion. The model is implemented in a finite element formulation. The
numerical predictions given by the model are compared with experimental results.

1 Introduction

Delamination is one of the most common types of damage in laminated fibre-
reinforced composites due to their relatively weak interlaminar strengths. De-
lamination may arise under various circumstances, such as in the case of trans-
verse concentrated loads caused by low velocity impacts.

Structural collapse in a composite structure is often caused by the evolution
of different types of damages created in a local zone of the structure. The
particular damage modes depend upon loading, lay-up and stacking sequence.
Delamination is often a significant contributor to the collapse of a structure



[1]. Moore et al. [2] justify the need to account for delamination from the point
of view of Fracture Mechanics: the energy release rates necessary for failure of
a composite part from intralaminar and interlaminar damage were computed
and the results showed that the lowest energy release rate obtained was for
delamination.

When other material non-linearities can be neglected, methods based on Lin-
ear Elastic Fracture Mechanics (LEFM) have been proven to be effective in
predicting delamination growth. However, LEFM cannot be applied without
an initial crack. In many situations, stress-based methods have been applied to
predict the initiation of delaminations, and after the delamination onset, Frac-
ture Mechanics can be used to describe delamination growth [3]-[4]. Techniques
such as virtual crack closure technique (VCCT) [5]-[9], J-integral method [10],
virtual crack extension [11] and stiffness derivative [12] have often been used.
These techniques have in common that the delamination is assumed to prop-
agate when the associated energy release rate is greater than or equal to a
critical value [13]. However, difficulties are also encountered when these tech-
niques are implemented using finite element codes. The calculation of fracture
parameters, e.g. stress intensity factors or energy release rates, requires nodal
variable and topological information from the nodes ahead and behind the
crack front. Such calculations can be done with some effort for a stationary
crack, but can be extremely difficult when progressive crack propagation is
involved.

Another approach to the numerical simulation of the delamination can be
developed within the framework of Damage Mechanics. Models formulated
using Damage Mechanics are based on the concept of the cohesive crack model:
a cohesive damage zone or softening plasticity is developed near the crack
front. The origin of the cohesive crack model goes back to Dugdale [14] who
introduced the concept that stresses in the material are limited by the yield
stress and that a thin plastic is generated in front of the notch. Barenblatt [15]
introduced cohesive forces on a molecular scale in order to solve the problem
of equilibrium in elastic bodies with cracks. Hillerborg et al. [16] proposed
a model similar to the Barenblatt model, but where the concept of tensile
strength was introduced. Hillerborg’s model allowed for existing cracks to grow
and, even more importantly, also allowed for the initiation of new cracks.

Cohesive damage zone models relate tractions to displacement jump at an
interface where a crack may occur. Damage initiation is related to the inter-
facial strength, i.e., the maximum traction on the traction-displacement jump
curve. When the area under the traction/displacement jump curve is equal to
the fracture toughness, the traction is reduced to zero and new crack surface
formed. The advantages of cohesive zone models are their simplicity and the
unification of crack initiation and growth within one model. Moreover, cohe-
sive zone formulations can also be easily implemented in finite element codes
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using decohesion elements [17]-[25].

In the formulation of the cohesive models, it is important to control the energy
dissipation during delamination growth in order to avoid the restoration of
the cohesive state, i.e., it is necessary to assure that the model satisfies the
Clausius-Duhem inequality. There are some models in the literature that can
be used under mixed-mode conditions [21],[23]-[24], [29]-[34], but some of them
do not satisfy the Clausius-Duhem inequality under variable-mode loading
situation.

A damage model for the simulation of delamination under variable-mode is
presented in this paper. A new delamination initiation criterion is developed
from the expression of the critical energy release rate for delamination propa-
gation under mixed-mode loading presented in [35]. The model is implemented
into the commercial finite element code ABAQUS by means of a user-written
decohesion element.

This paper is structured as follows: first, the formulation of the delamination
onset and growth model is presented. Afterward, the delamination damage
model is formulated and the initiation and propagation surfaces are defined.
The finite element discretization of the boundary value problem is based on
the variational formulation of the local form of momentum balance. Finally,
the numerical predictions are compared with experimental results.

2 Model for delamination onset and propagation

The boundary value problem, the kinematic equations, and the constitutive
relations are presented for the formulation of the model for delamination onset
and delamination propagation.

2.1 Boundary value problem

Consider a domain Ω, as shown in figure 1(a), containing a crack Γc. The part
of the crack on which a cohesive law is active is denoted by Γcoh and is called
the fracture process zone (FPZ).

Prescribed tractions, Fi, are imposed on the boundary ΓF , whereas prescribed
displacements are imposed on Γu. The stress field inside the domain, σij, is
related to the external loading and the closing tractions τ+j , τ

−
j in the cohesive

zone through the equilibrium equations:

σij,j = 0 on Ω (1)
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Fig. 1. Body Ω crossed by a material discontinuity Γd in the undeformed configu-
ration

σijnj = ti on ΓF (2)

σijn
+
j = τ+i = −τ−i = σijn

−
j on Γcoh (3)

2.2 Kinematics of the interfacial surface

To develop the necessary kinematic relationships, consider the crack Γc shown
in Figure 1(a) part of a material discontinuity, Γd, which divides the domain
Ω into two parts, Ω+ and Ω− (Figure 1(b)).

The displacement jump [[ui]] across the material discontinuity Γd can be writ-
ten as:

[[ui]] = u+i − u−i (4)

where u±i denotes the displacement of the points on the surface of the material
discontinuity Γd of the part Ω± of the domain.

The fundamental problem introduced by the interfacial surface Γd is how to
express the virtual displacement jumps associated to the surfaces Γd± as a
function of the virtual displacements. Consider a three-dimensional space with
Cartesian coordinates Xi, i = 1, 2, 3 . Let the Cartesian coordinates x±i de-
scribe the deformation of the upper and lower surfaces Γd± in the deformed
configuration. Any material point on Γd± in the deformed configuration is
related to its undeformed configuration through:

x±i = Xi + u±i (5)

where u±i are displacements quantities with respect to the fixed Cartesian
coordinate system. Then, the coordinates x̄i of the midsurface can be written
as:

x̄i = Xi +
1

2

³
u+i + u−i

´
(6)
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Fig. 2. Interfacial surface deformation

The components of the displacement jump vector are evaluated at the mid-
surface Γ̄d, which is coincident with Γd in the undeformed configuration (see
figure 2). The midsurface coordinate gradients define the components of the
two vectors, vηi and vξi , that define the tangential plane at a given point, P̄ :

vηi = x̄i,η (7)

vξi = x̄i,ξ (8)

where η, ξ are curvilinear coordinates on the surface Γ̄d. Although vηi and
vξi are generally not orthogonal to each other, their vector product defines a
surface normal. Therefore, the local normal coordinate vector is obtained as:

vn = vξ × vη kvξ × vηk−1 (9)

The tangential coordinates are then obtained as:

vs = vξ kvξk−1 (10)

vt = vn × vs (11)

The components of vn,vs and vt represent the direction cosines of the local
coordinate system in the global coordinate system at a material point P̄ ∈ Γ̄d.
The director cosines define the following rotation tensor Θmi, expressed in
Voigt notation as:

Θ = [vn,vs,vt] (12)

Θ is orthogonal and relates the local coordinate system to the fixed coordinate
system. Using the rotation tensor, the normal and tangential components of
the displacement jump tensor expressed in terms of the displacement field in
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global coordinates are:
∆m = Θmi [[ui]] (13)

∆m is the displacement jump tensor in the local coordinate system.

The deformed differential surface area of the midsurface dΓ̄d is expressed in
the form:

dΓ̄d = kvξ × vηk dΓ0d = JdΓ0d (14)

where dΓ0d is the differential undeformed surface area.

2.3 Constitutive laws

A constitutive law relating the cohesive tractions, τ j, to the displacement
jump in the local coordinates, ∆i, is required for modelling the constitutive
behaviour of the material discontinuity. The constitutive laws in the material
discontinuity may be formally written:

τ j = τ (∆i) (15)

τ̇ j = Dtan
ji ∆̇i (16)

where Dtan
ji is the constitutive tangent stiffness tensor.

A new constitutive model relating the displacement jumps to the tractions,
and based on Damage Mechanics is proposed.

The delamination model proposed follows the general formulation of Contin-
uum Damage Models proposed by Simo and Ju [36]-[37] and Mazars [38].

The free energy per unit volume of the interface is defined as:

ψ (∆, d) = (1− d)ψ0 (∆) (17)

where d is the damage variable and ψ0 is a convex function in the displacement
jump space defined as:

ψ0 (∆) =
1

2
∆iD

0
ij∆j (18)

Negative values of ∆3 do not have any physical meaning because interpene-
tration is prevented by contact. Therefore negative values of ∆3 should not
have any influence in the variation of the free energy of the interface. Thus, a
modification of equation (17) is proposed to prevent interfacial penetration of
the two adjacent layers after complete decohesion. The expression for the free
energy per unit volume proposed is:

ψ (∆, d) = (1− d)ψ0 (∆i)− dψ0
³
δ̄3i h−∆3i

´
(19)
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where h·i is the MacAuley bracket defined as hxi = 1
2
(x+ |x|) and δ̄ij is the

Kronecker delta. The constitutive equation for the interface is obtained by
differentiating the free energy with the displacement jumps:

τ i =
∂ψ

∂∆i
= (1− d)D0

ij∆j − dD0
ij δ̄3j h−∆3i (20)

In the present model, the initial stiffness tensor, D0
ij, is defined as:

D0
ij = δ̄ijK (21)

where the scalar parameter K is a penalty stiffness. In the expanded form, the
constitutive equation can be written in Voigt notation as:

τ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
τ 1

τ 2

τ 3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= (1− d)K

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∆1

∆2

∆3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
− dK

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0

0

h−∆3i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(22)

The energy dissipation during damage evolution, Ξ , represented in Figure 3
for single-mode loading, can be obtained from:

Ξ = −∂ψ
∂d
ḋ ≥ 0 (23)

The model defined by equation (20) is fully determined if the value of the

Fig. 3. Energy dissipation during damage evolution

damage variable d can be evaluated at every time step of the deformation
process. For that purpose, it is necessary to define a suitable norm of the
displacement jump tensor, a damage criterion, and a damage evolution law,
as will be described in the following sections.
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2.3.1 Norm of the displacement jump tensor

The norm of the displacement jump tensor is denoted as λ and is also called
equivalent displacement jump norm. It is used to compare different stages of
the displacement jump state so that it is possible to define such concepts as
‘loading’, ‘unloading’ and ‘reloading’. The equivalent displacement jump is a
non-negative and continuous function, defined as:

λ =
q
h∆3i2 + (∆shear)

2 (24)

where ∆3 is the displacement jump in mode I, i.e., normal to midplane, and
∆shear is the euclidean norm of the displacement jump in mode II and in mode
III:

∆shear =
q
(∆1)

2 + (∆2)
2 (25)

2.3.2 Damage criterion

The damage criterion is formulated in the displacement jump space. The form
of this criterion is:

F
³
λt, rt

´
:= λt − rt ≤ 0 ∀t ≥ 0 (26)

where t indicates the actual time and rt is the damage threshold for the current
time. If r0 denotes the initial damage threshold, then rt ≥ r0 at every point
in time. Damage initiation is produced when the displacement jump norm, λ,
exceeds the initial damage threshold, r0, which is a material property.

A fully equivalent expression for equation (26) that is more convenient for
algorithmic treatment is [39]:

F̄
³
λt, rt

´
:= G

³
λt
´
− G

³
rt
´
≤ 0 ∀t ≥ 0 (27)

where G(·) is a suitable monotonic scalar function ranging from 0 to 1. G(·)
will define the evolution of the damage value, and will be presented in the
next section.

2.3.3 Damage evolution law

The evolution laws for the damage threshold and the damage variable must be
defined in the damage model. These laws are defined by the rate expressions:

ṙ = µ̇ (28)

ḋ = µ̇
∂F̄ (λ, r)

∂λ
= µ̇

∂G (λ)

∂λ
(29)
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where µ̇ is a damage consistency parameter used to define loading/unloading
conditions according to the Kuhn-Tucker relations:

µ̇ ≥ 0 ; F̄
³
λt, rt

´
≤ 0 ; µ̇F̄

³
λt, rt

´
= 0 (30)

From the previous equations it is easy to prove [36] that the evolution of the
internal variables may be explicitly integrated to render:

rt = max
½
r0,max

s
λs
¾

0 ≤ s ≤ t (31)

dt = G
³
rt
´

(32)

which fully describes evolution of the internal variables for any loading/ un-
loading/ reloading situation. The scalar function G (·) defines the evolution
of the damage value. For a given mixed-mode ratio, β, the function proposed
here is defined as,

G (λ) =
∆f (λ−∆0)

λ (∆f −∆0)
(33)

Equation (33) defines the damage evolution law by means of a bilinear consti-
tutive equation (see Figure 4), where ∆0 is the onset displacement jump and
it is equal to the initial damage threshold r0. The initial damage threshold
is obtained from the formulation of the initial damage surface or initial dam-
age criterion. ∆f is the final displacement jump and it is obtained from the
formulation of the propagation surface or propagation criterion.

Fig. 4. A bilinear constitutive equation for the decohesion element for a mixed mode
loading situation

It is therefore necessary to establish the delamination onset and propagation
surfaces for the complete definition of the damage model. Delamination on-
set and propagation surfaces and the damage evolution law fully define the
constitutive equations.
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The constitutive equations for the interfacial surface are normally developed in
a phenomenological way, i.e., satisfying empirical relations that are obtained
using experimental results. There are several types of constitutive equations
used in decohesion elements: Tvergaard and Hutchinson [40] purpose a trape-
zoidal law, Cui an Wisnom [41] a perfectly plastic rule, Needleman first pre-
sented a polynomial law, [27], and later an exponential law [28]. Goyal et al.[42]
adopted Needleman’s exponential law to account for load reversal without ma-
terial healing.

In this paper the law used within the decohesion elements is a bilinear law
[21],[24],[43]. The bilinear law is the most commonly used cohesive law due to
its simplicity. One drawback of the bilinear law is that the traction-displacement
jump relation is discontinuous at its maximum. The discontinuities in the
traction-displacement jump relation can be avoided using continuous func-
tions. However, even for such continuous functions, the discontinuity is un-
avoidable when modeling loading-unloading cycles.

For a given mixed-mode ratio, β, defined as:

β =
∆shear

∆shear + h∆3i (34)

the bilinear constitutive equation is defined by a penalty parameter, K, the
damage value, d, the mixed-mode damage initiation, ∆0 and the total decohe-
sion parameter, ∆f . These last two values are given by the formulation of the
onset and the propagation criterion which takes into account the interaction
between different modes and their value depends on the mixed-mode ratio β.
The penalty parameter K assures a stiff connection between two neighboring
layers before delamination initiation. The penalty parameter should be large
enough to provide a reasonable stiffness but small enough to avoid numerical
problems, such as spurious tractions oscillations [44], in a finite element anal-
ysis. Daudeville et al. [45] have proposed the definition of the penalty stiffness
as a function of the interface thickness, t, and elastic moduli of the interface.
Zou et al. [4],[46] have proposed a value for the penalty parameter between 105

and 107 times the value of the interfacial strength per unit length. Camanho
and Dávila [24],[47] successfully used a value of 106N/mm3, which is smaller
than the values proposed by Daudeville et al. [45] and Zou et al. [4],[46].

Propagation criterion

The criterion used to predict delamination propagation under mixed-mode
loading conditions is usually established in terms of the energy release rate
and fracture toughness. It is assumed that when the energy release rate, G,
exceeds a critical value, the critical energy release rate Gc, delamination will
grow.
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The most widely used criterion to predict delamination propagation under
mixed-mode loading, the ”power law criterion” is normally established in
terms of a linear or quadratic interaction between the energy release rates
[48]. However, Camanho et al. [24] shown that using the expression proposed
by Benzeggagh and Kenane [35] for the critical energy release rate for a mixed-
mode ratio is more accurate for epoxy composites. Using the expression by
Benzeggagh and Kenane in [35], the propagation criterion can be written as:

G = GIc + (GIIc −GIc)
µ
Gshear

GT

¶η
(35)

where G = GI +Gshear is the energy release rate under mixed-mode loading
and Gshear = GII +GIII is the energy release rate for shear loading proposed
by Li [49],[50].

The propagation surface in the displacement jump space is defined through
the final displacements, which are defined from the pure mode fracture tough-
ness (GIC , GIIC , GIIIC) and considering that the area under the traction-
displacement jump curves is equal to the corresponding fracture toughness,
i.e.:

GC =
1

2
K∆0∆f (36)

For a given mixed-mode ratio, β, the energy release rates corresponding to
total decohesion are obtained from:

GI =
1

2
K∆0

3 (β)∆
f
3 (β) (37)

Gshear =
1

2
K∆0

shear (β)∆
f
shear (β) (38)

where ∆0
shear (β) and ∆0

3 (β) are respectively the shear and normal displace-
ment jump corresponding to the onset of softening under mixed-mode loading,
and ∆f

shear (β) and ∆
f
3 (β) are respectively the shear and normal displacement

jump corresponding to the total decohesion under mixed-mode loading.

From (34):

∆0
shear (β) = ∆0

3 (β)
β

β + 1
(39)

∆f
shear (β) = ∆f

3 (β)
β

β + 1
(40)

Using equations (39) and (40) in (37) and (38) the ratio between Gshear

GT
can

be established in terms of β:

Gshear

GT
=

β2

1 + 2β2 − 2β (41)
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Since the ratio Gshear

GT
is only a function of the mixed-mode ratio β, hencefor-

ward this ratio is named as B:

B =
Gshear

GT
(42)

Using equation (36), (41) and (42) in equation (35) the propagation criterion
is obtained in the displacement jump space as:

∆f =
∆0
3∆

f
3 +

³
∆0

shear∆
f
shear −∆0

3∆
f
3

´
[B]η

∆0
(43)

Initial damage surface

Under pure mode I, mode II or mode III loading, delamination onset occurs
when the corresponding interlaminar traction exceeds its respective maximum
interfacial strength, τ 03, τ

0
2, τ

0
1. Under mixed-mode loading, an interaction be-

tween modes must be taken into account. Few models take into account the
interaction of the traction components in the prediction of damage onset. The
models that account for the interaction of the traction components are usually
based on Ye’s criterion [51], using a quadratic interaction between modes:

Ãhτ 3i
τ 03

!2
+

Ã
τ 2
τ 02

!2
+

Ã
τ 1
τ 01

!2
= 1 (44)

However, experimental data for the initiation of delamination under mixed-
mode is not readily available and consequently, failure criterion that can pre-
dict the initiation have not been fully validated.

The criterion for propagation is often formulated independently of the crite-
rion for initiation. In this paper, a link between propagation and initiation
is proposed. Since delamination is a fracture process, the initiation criterion
proposed in this paper evolves from the propagation criterion and the damage
evolution law. The isodamage surface for a damage value equal to 1 corre-
sponds to the propagation surface obtained from equation (35). Then, the
isodamage surface for a damage value equal to 0 is the initial damage surface.
With these assumptions, the criterion for delamination initiation proposed
here is:³

τ 0
´2
= (τ 3)

2 + (τ 1)
2 + (τ 2)

2 = (τ o3)
2 +

³
(τ oshear)

2 − (τ o3)2
´
[B]η (45)

In the displacement jump space, the criterion becomes:

³
∆0
´2
= (∆3)

2 + (∆1)
2 + (∆2)

2 =
³
∆0
3

´2
+
µ³

∆0
shear

´2 − ³∆0
3

´2¶
[B]η (46)
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The initiation criterion developed here and summarized by equation (45) is
compared with Ye’s criterion and with a maximum traction criterion, which
do not take into account mode interaction. The surfaces obtained by the dif-
ferent criterions are represented in Figure 5. The values predicted by the new
criterion are very close to Ye’s criterion, that has been successfully used in
previous investigations [24].

Fig. 5. Comparision between Ye’s criterion, a maximum traction criterion and the
new proposed criterion

The formulation presented assures a smooth transition for all mixed-mode ra-
tios between the initial damage surface to the propagation surface through
damage evolution. In Figure 6 it is represented the evolution of the damage
surface from the damage initiation surface to the propagation surface for pos-
itive values of displacement jumps.

2.4 Formulation of the constitutive tangent tensor

According to equation (16), the constitutive tangent tensor needs to be defined
for the formulation of the constitutive laws in the material discontinuity and
for the later numerical implementation of the proposed model. The constitu-
tive tangent tensor is obtained from the differentiation of the secant equation
(20):

τ̇ i = Dij∆̇j − δ̄ijK

"
1 + δ̄3j

h−∆ji
∆j

#
∆j ḋ (47)
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Fig. 6. Damage evolution surface in the relative displacement’s space

where Dij is defined as:

Dij = δ̄ijK

"
1− d

Ã
1 + δ̄3j

h−∆ji
∆j

!#
(48)

The evolution of the damage variable d only occurs for loading situations.
Then, the evolution of the damage variable can be written as:

ḋ =

⎧⎪⎨⎪⎩ Ġ (λ) =
∂G(λ)
∂λ

.

λ , r < λ < ∆f

0 , r > λ or ∆f < λ
(49)

where the variation of the function G is obtained assuming that the variation
of the final displacement jump ∆f and the onset displacement jump ∆0 with
the mixed-mode ratio β are not significant for the time increment taken:

∂G (λ)

∂λ
=

∆f∆0

∆f −∆0

1

λ2
(50)

The evolution of the displacement norm is obtained from equation (24):

.

λ =
∂λ

∂∆k
∆̇k =

∆k

λ

Ã
1 + δ̄3k

h−∆ki
∆k

!
∆̇k (51)

Using equations (49) through (51), equation (47) can be written as:

τ̇ i = Dtan
ij ∆̇j (52)
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Dtan
ij =

⎧⎪⎨⎪⎩
n
Dij −K

h
1 + δ̄3j

h−∆ji
∆j

i h
1 + δ̄3i

h−∆ii
∆i

i
H∆i∆j

o
, r < λ < ∆f

Dij , r > λ or ∆f < λ

(53)
where H is a scalar value given by:

H =
∆f∆0

∆f −∆0

1

λ3
(54)

3 Finite element discretization - computational model

To transform the strong form of the boundary value problem into a weak form
better suited for finite element computations, the displacement ui must belong
to the set U of the kinematically admissible displacement fields which allows
for discontinuous displacements across the boundary Γd of the delamination.
The weak form of the equilibrium equation is [52]:Z

Ω
σijδεijdΩ+

Z
Γd
τ iδ∆mJdΓ

0
d =

Z
ΓF

FiδvidΓ+
Z
Ω
ρbiδvidΩ ∀vi ∈ U (55)

where bi are the body forces, Fi are surface forces, and equation (14) has
been used to relate the initial and the deformed midsurface of the material
discontinuity.

The discretization of the domain has been performed by the discretization of
the whole domain Ω with standard volume elements. However, the surfaces
surrounding the potential delamination Γd are discretized with decohesion el-
ements [24]. The discretized formulation is divided in the two domains consid-
ering no formal coupling between the continuous and the discontinuous parts
of the deformation in the expression for the free energy of the interface [53].
Since the decohesion elements used have zero thickness, the body forces are
neglected in these elements. Moreover, it is assumed that no external surface
loads are applied. Therefore, the weak form of the internal virtual work for
the elements in the surfaces surrounding the potential delaminations can be
written as: Z

Γd
τ iδ∆mJdΓ

0
d = 0 (56)

The displacements and displacement gradients for the decohesion elements are
approximated as:

ui|Ωe = Ne
Kq

e
Ki

(57)

[[ui]] |Ωe = N
e
Kq

e
Ki

(58)
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where

N
e
K =

⎧⎪⎨⎪⎩ Ne
K K ∈ Γ+d

−Ne
K K ∈ Γ−d

(59)

where, qeKi is the displacement in the i direction of the K node of the el-
ement, Ne

K are standard Lagrangian shape functions [52]. N
e
K are standard

Lagrangian shape functions defined for the decohesion elements [24].

Using equation (58) in equation (56) the weak form of the internal virtual
work at current time t ∈ R+, is given by:Z

Γd
τ iB̂imKδqKiJdΓ

0
d = 0 (60)

where B̂miK is the discrete operator that relates the displacement jump in
local coordinates to nodal displacements,

δ∆m = B̂imKδqKi (61)

The system of equations given by equation (60) forms the basis for the assumed
displacement finite element procedure.

3.1 Discretization of the interfacial surface

3.1.1 Element kinematics

According to equation (57), the displacement field, ui, and the undeformed
material coordinate, Xi, associated to the surfaces Γd± are interpolated as
follows:

u±i = NKq
±
Ki (62)

X±
i = NKp

±
Ki (63)

where q±Ki are the nodal displacement vector and p±Ki are the undeformed
material nodal coordinate vector. Note that the values of p−Ki and p+Ki can be
different in the case that an initial crack exists. Using these equations, the
material coordinates of the interfacial midsurface are:

x̄i =
1

2
NKi

³
p+Ki + p−Ki + q+Ki + q−Ki

´
(64)

The components of the two vectors that define the tangential plane can be
written as:

vηi = x̄i,η = NKi,η
1

2

³
p+Ki + p−Ki + q+Ki + q−Ki

´
(65)

vξi = x̄i,ξ = NKi,ξ
1

2

³
p+Ki + p−Ki + q+Ki + q−Ki

´
(66)
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Using (58) and (12), the displacement jump can then be obtained in local
coordinates as:

∆m = ΘimN̄kqKi = B̄imKqKi (67)

3.1.2 Element internal force vector and tangent stiffness matrix

The internal force vector of the interface element obtained from equation (60)
is given by:

fKi =
Z
Γdi

τ iB̂imKJdΓ
0
c (68)

where B̂imK can be written as:

B̂imK =
δ∆m

δqKi
=

∂B̄jmP

∂qKi
qPj + B̄imK (69)

The softening nature of the decohesion element constitutive equation causes
difficulties in obtaining a converged solution for the non-linear problem. Nu-
merical algorithms such as Newton-Raphson method are used to solve the
nonlinear problem. Therefore, the tangent stiffness matrix must be defined.
The tangent stiffness matrix stems from the linearization of the internal force
vector and it is obtained using Taylor’s series expansion about the approxima-
tion qKi [25]. The tangent stiffness matrix, KKiZv, for the decohesion element
is:

KKiZv =
∂fKi

∂qZv
=
Z
Γd

dτ i
dqZv

B̂imKJdΓ
0
d+

Z
Γd

dB̂imK

dqZv
τ iJdΓ

0
d+

Z
Γd

dJ

dqZv
τ iB̂imKdΓ

0
d

(70)
The computation of the tangent stiffness matrix is intensive and a very ac-
curate expression is not required. Therefore, the second and the third term
in the R.H.S of equation (70) are neglected. Thus, the approximate tangent
stiffness matrix is:

KKiZv ≈
Z
Γd

dτ i
dqZv

B̂imKJdΓ
0
d =

Z
Γd
B̂vjZD

tan
ij B̂imKJdΓ

0
d (71)

where Dtan
ij is the material tangent stiffness matrix, or constitutive tangent

tensor used to define the tangent stiffness matrix. The constitutive tangent
tensor is defined in 2.4.

4 Comparison with experimental studies

The formulation proposed here was implemented in the ABAQUS Finite El-
ement code [54] as a user-written element subroutine (UEL). To verify the
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element under different loading conditions, the double cantilever beam (DCB)
test, the end notched flexure (ENF) test, and mixed-mode bending (MMB)
tests are simulated. The numerical predictions are compared with experimen-
tal data. The DCB test consists of pure mode I delamination. The ENF tests
measure pure mode II interlaminar fracture toughness, and the MMB de-
laminate under Mixed mode I and II. In the absence of mode III loading,
Gshear = GII . To investigate the accuracy of the formulation in the simu-
lation of delamination DCB, ENF and MMB simulations are conducted for
PEEK/APC2, a thermoplastic matrix composite material.

4.1 Mode I, mode II and mixed-mode I and II delamination growth for a
PEEK composite

The most widely used specimen for mixed-mode fracture is the mixed-mode
bending (MMB) specimen shown in Figure 7, which was proposed by Reeder
and Crews [55], [56] and later re-designed to minimize geometric nonlinearities
[57]. This test method was recently standardized by the American Society for
Testing and Materials [58].

Fig. 7. MMB test specimen

The main advantages of the MMB test method are the possibility of using
virtually the same specimen configuration as for mode I tests, and the ca-
pability of obtaining different mixed-mode ratios, ranging from pure mode
I to pure mode II, by changing the length c of the loading lever shown in
Figure 7. An 8-node decohesion element is used to simulate DCB, ENF and
MMB tests in unidirectional AS4/PEEK carbon-fiber reinforced composite.
The specimens simulated are 102-mm-long, 25.4-mm-wide, with two 1.56-mm-
thick arms. The material properties are shown in Table 1, and a penalty stiff-
ness K = 106N/mm3 is used.
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Table 1. Properties for PEEK/AS4

E11 E22 = E33 G12 = G13 G23 ν12 = ν13

122.7 GPa 10.1 GPa 5.5 GPa 3.7 GPa 0.25

ν23 GIC GIIC τ 03 τ 02 = τ 01

0.45 0.969 kJ/m2 1.719 kJ/m2 80 MPa 100 MPa

The experimental tests were performed at different GII

GT
ratios, ranging from

pure mode I loading to pure mode II loading. The initial delamination length
of the specimens (a0) and the mixed-mode fracture toughness obtained exper-
imentally are shown in Table 2.

Table 2. Experimental data

GII/GT 0% (DCB) 20% 50% 80% 100% (ENF)

Gc [kJ/m
2] 0.969 1.103 1.131 1.376 1.719

a0 [mm] 32.9 33.7 34.1 31.4 39.2

Models using 150 decohesion elements along the length of the specimens, and
4 decohesion elements along the width, are created to simulate the ENF and
MMB test cases. The initial size of the delamination is simulated by plac-
ing open decohesion elements along the length corresponding to the initial
delamination of each specimen (see Table 2). These elements are capable of
dealing with the contact conditions occurring for mode II or mixed-mode I
and II loading, therefore avoiding interpenetration of the delamination faces.
The model of the DCB test specimen uses 102 decohesion elements along the
length of the specimen. The different GII/GT ratios are simulated by apply-
ing different loads at the middle and at the end of the test specimen. The
determination of the middle and end loads for each mode ratio is presented in
[24]. The experimental results relate the load to the displacement of the point
of application of the load P in the lever (load-point displacement, Figure 7).
Since the lever is not simulated, it is necessary to determine the load-point
displacement from the displacement at the end and at the middle of the spec-
imen, using the procedure described in [24]. The B-K parameter η = 2.284
is calculated by applying the least-squares fit procedure proposed in [24] to
the experimental data shown in Table 2. Figure 8 shows the numerical predic-
tions and the experimental data for all the test cases simulated, and Table 3
shows the comparison between the predicted and experimentally determined
maximum loads. It can be concluded that a good agreement between the
numerical predictions and the experimental results is obtained. The largest
difference (−8.1%) corresponds to the case of an MMB test specimen with
GII

GT
= 20%. This fact is not surprising, since the largest difference between the
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Fig. 8. Numerical and experimental results

fracture toughness experimentally measured and the one predicted using the
B-K criterion occurs for GII

GT
= 20% (see [24]).

Table 3 Comparison of the maximum load

GII/GT Predicted [N ] Experimental [N ] Error (%)

0% (DCB) 152.4 147.5 3.4

20% 99.3 108.1 -8.1

50% 263.9 275.3 -4.2

80% 496.9 518.7 -4.2

100% (ENF) 697.1 748.4 -6.9

5 Concluding remarks

A thermodynamically consistent damage model for the simulation of progres-
sive delamination based on Damage Mechanics was presented. A constitutive
equation for the interface was derived from the variation of the free energy of
the interface. The resulting damage model simulates delamination onset and
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delamination propagation. The constitutive equation proposed uses a single
variable to track the damage at the interface under general loading condi-
tions. A new initiation criterion that evolves from the Benzeggagh-Kenane
propagation criterion has been developed to assure that the model accounts
for changes in the loading mode in a thermodynamically consistent way and
avoids material healing. The damage model was implemented in the finite el-
ement code ABAQUS by means of a user-written decohesion element. The
material properties required to define the element constitutive equations are
the interlaminar fracture toughnesses, the penalty stiffness, and the strengths
of the interface. In addition, a material parameter η, which is determined from
standard delamination tests, is required for the Benzeggagh-Kenane mode in-
teraction law.

Three examples were presented that test the accuracy of the method. Simula-
tions of the DCB and ENF tests represent cases of single-mode delamination.
MMB tests were simulated at various proportions of mode I and II loading
conditions. The examples analyzed are in good agreement with the test results
and they indicate that the proposed formulation can predict the strength of
composite structures that exhibit progressive delamination. Although the ex-
amples presented in this work were obtained for composite specimens contain-
ing pre-existing delaminations, the formulations can be extended to composite
structures without any pre-existing defects.

APPENDIX A

A Algorithm

In this section the algorithm implementation of the previous model is outlined.
The algorithm contemplates two different options for the computation of the
initiation and propagation surfaces. The first option uses the expression for
the critical energy release rate formulated by Benzeggagh and Kenane [35].
The second option uses a Power-law form for the failure criterion, which is
widely used in the literature for the simulation of delamination. The Power-
law criterion is given by: µ

GI

GIc

¶η
+
µ
GII

GIIc

¶η
= 1 (A.1)

Initial data for time t+1

Material properties: GIC , GIIC , GIIIc, E, η, τ
0
shear, τ

0
3
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Current values: ∆3,∆shear,d
t

(1) Determine mixed-mode ratios

β =
∆shear

h∆3i+∆shear
(A.2)

B =
β2

1 + 2β2 − 2β (A.3)

(2) Determine pure mode onset displacements

∆0
i =

τ 0i
K

i = 3, shear (A.4)

(3) Determine mixed-mode onset displacement

Benzeggagh−Kenane (BK)
∆0 =

r
(∆0

3)
2
+
h
(∆0

shear)
2 − (∆0

3)
2
i
[B]η

Power law (PL)

∆0 =

√
1+2β2−2β∆0

3∆
0
shearh

((1−β)∆0
shear)

2η
+(β∆0

3)
2η
i 1
2η

(A.5)

(4) Determine mixed-mode final displacements

BK

∆f = 2
K∆0 [GIc + (GIIc −GIc) [B]

η]

PL

∆f =
2[1+2β2−2β]

K∆0

∙³
(1−β)2
GIc

´η
+
³

β2

GIIc

´η¸− 1
η

(A.6)

(5) Evaluate displacement jump norm

λ=
q
h∆3i2 + (∆shear)

2 (A.7)

(6) Update internal variables

rt =
∆0∆f

∆f − dt [∆f −∆0]
(A.8)

rt+1 = max
n
rt, λt+1

o
(A.9)

dt+1 =
∆f (rt+1 −∆0)

rt+1 (∆f −∆0)
(A.10)
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(7) Compute tangent stiffness tensor

Dtan = Dtan
s +Dtan

k (A.11)

where

Dtan
s =

⎡⎢⎢⎢⎢⎢⎣
(1− d) k 0 0

0 (1− d) k 0

0 0
³
1− d h∆3i

∆3

´
k

⎤⎥⎥⎥⎥⎥⎦ (A.12)

and Dtan
k depends on the loading/unloading conditions:

IF
³
λt+1 < rt or ∆f < λt+1

´
Dtan

k = 0 (A.13)

IF
³
rt < λt+1 < ∆f

´

Dtan
k =

⎡⎢⎢⎢⎢⎢⎣
−kH∆1∆1 −kH∆1∆2 −kH∆1∆3

³ h∆3i
∆3

´
−kH∆2∆1 −kH∆2∆2 −kH∆2∆3

³ h∆3i
∆3

´
−kH∆3

³ h∆3i
∆3

´
∆1 −kH∆3

³ h∆3i
∆3

´
∆2 −kH∆3∆3

³ h∆3i
∆3

´

⎤⎥⎥⎥⎥⎥⎦
(A.14)

where for a bilinear constitutive law H is given by equation 54.
(8) Compute tractions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ 1

τ 2

τ 3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= (1− d) k

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∆1

∆2

∆3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
− dk

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0

0

h−∆3i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A.15)
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